Boundary Behavior of Harmonic Functions for Truncated Stable Processes
نویسندگان
چکیده
For any α ∈ (0, 2), a truncated symmetric α-stable process in R is a symmetric Lévy process in R with no diffusion part and with a Lévy density given by c|x| 1{|x|<1} for some constant c. In [24] we have studied the potential theory of truncated symmetric stable processes. Among other things, we proved that the boundary Harnack principle is valid for the positive harmonic functions of this process in any bounded convex domain and showed that the Martin boundary of any bounded convex domain with respect to this process is the same as the Euclidean boundary. However, for truncated symmetric stable processes, the boundary Harnack principle is not valid in non-convex domains. In this paper, we show that, for a large class of not necessarily convex bounded open sets in R called bounded roughly connected κ-fat open sets (including bounded non-convex κ-fat domains), the Martin boundary with respect to any truncated symmetric stable process is still the same as the Euclidean boundary. We also show that, for truncated symmetric stable processes a relative Fatou type theorem is true in bounded roughly connected κ-fat open sets. AMS 2000 Mathematics Subject Classification: Primary 60J45, 60J75; Secondary 60J25, 60J50.
منابع مشابه
Potential Theory of Truncated Stable Processes
R d with a Lévy density given by c|x| 1{|x|<1} for some constant c. In this paper we study the potential theory of truncated symmetric stable processes in detail. We prove a Harnack inequality for nonnegative harmonic nonnegative functions of these processes. We also establish a boundary Harnack principle for nonnegative functions which are harmonic with respect to these processes in bounded co...
متن کاملar X iv : m at h / 06 05 53 3 v 1 [ m at h . PR ] 1 8 M ay 2 00 6 Potential Theory of Truncated Stable Processes
R d with a Lévy density given by c|x| 1{|x|<1} for some constant c. In this paper we study the potential theory of truncated symmetric stable processes in detail. We prove a Harnack inequality for nonnegative harmonic nonnegative functions these processes. We also establish a boundary Harnack principle for nonnegative functions which are harmonic with respect to these processes in bounded conve...
متن کاملar X iv : m at h / 06 05 53 3 v 2 [ m at h . PR ] 1 9 Ju n 20 06 Potential Theory of Truncated Stable Processes
R d with a Lévy density given by c|x| 1{|x|<1} for some constant c. In this paper we study the potential theory of truncated symmetric stable processes in detail. We prove a Harnack inequality for nonnegative harmonic nonnegative functions of these processes. We also establish a boundary Harnack principle for nonnegative functions which are harmonic with respect to these processes in bounded co...
متن کاملBoundary behavior of α-harmonic functions on the complement of the sphere and hyperplane
We study α-harmonic functions on the complement of the sphere and on the complement of the hyperplane in Euclidean spaces of dimension bigger than one, for α ∈ (1, 2). We describe the corresponding Hardy spaces and prove the Fatou theorem for α-harmonic functions. We also give explicit formulas for the Martin kernel of the complement of the sphere and for the harmonic measure, Green function an...
متن کاملLocal Imperfection Effects on Thermal Buckling Behavior of Composite Fiber Reinforced Truncated Conical Liner
Thermal buckling behavior of truncated conical liner reinforced by laminated composite is investigated in the presence of a general initial imperfection. For this purpose, the method of virtual work and first-order strain-deformation shell theory are employed to extract equilibrium equations. To this end, a finite element code is developed using the 3D 8-node shell element with six degrees of f...
متن کامل